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1 General introduction 

 As a main system of stress regulation, the hypothalamic-pituitary-adrenal (HPA) axis 

induces the production and release of cortisol from the adrenal glands (SAPOLSKY et al. 2000, 

JACOBSON 2005). While short-term activation of the HPA axis is an adaptive physiological response 

to stressors and essential for survival, long-term increased cortisol release can harm an organism 

(MOBERG 2000, MCEWEN 2008). Farm animals, in particular, can be exposed to many different 

stresses and strains due to their husbandry conditions (WOOD-GUSH et al. 1975, FRASER et al. 

2001). Previous studies have shown that stress in animals can lead, for example, to impaired muscle 

growth, reduced reproductive success, and immunodeficiency (BARNETT and HEMSWORTH 1990, 

TURNER et al. 2012). These consequences may lead to maladaptation and increased biological costs 

(distress), which can impair animal welfare, a complex concept that considers both physical and 

mental health and in which stress monitoring is an important element (TILBROOK and RALPH 2017). 

Since stress leads to an increase in cortisol secretion, this elevation in systemic cortisol 

concentrations is used as a biological marker in stress research (SPENCER and DEAK 2017). Usually, 

cortisol analysis is carried out in blood, saliva, urine, and faeces samples (MÖSTL and PALME 2002). 

These conventional biological matrices provide insights into cortisol concentrations from minutes 

to hours before sampling (COOK 2012). However, cortisol is released in a pulsatile, and circadian 

rhythm (JACOBSON 2005), so repeated measurements may be necessary to use these materials to 

assess long-term stress, that is, stress that occurs over several weeks to months (DHABHAR 2018). 

With a growing interest in studying long-term stress in farm animals, minimally or non-invasive 

methods are increasingly the focus of stress research and animal-welfare science. 

 About 20 years ago, scientists took up the results of forensic and drug research in human 

hair and analysed cortisol in this novel sampling material for the first time (CIRIMELE et al. 2000, 

KOREN et al. 2002). Cortisol is predominantly incorporated into a growing hair by diffusion from 

blood vessels (MEYER and NOVAK 2012), so hair provides average cortisol concentrations from the 

period of hair growth (weeks to years) (STALDER and KIRSCHBAUM 2012). Hair sampling is also 

minimally invasive, hair can be stored easily, and longer hair strands offer the possibility of creating 

a retrospective calendar (KIRSCHBAUM et al. 2009, RUSSELL et al. 2012). These numerous 

advantages of hair have stimulated research on hair cortisol analysis, not only in humans but 

increasingly in wild and domesticated animals as well (RUSSELL et al. 2012, BURNARD et al. 2017, 

MESARCOVA et al. 2017). Previous studies have investigated various determinants of variations in 

hair cortisol concentrations (HCCs) and have shown the dependence of HCC not only on stress-

related factors but also on individual and environmental determinants (BURNARD et al. 2017, 

STALDER et al. 2017). However, basic knowledge about this relatively new method of cortisol 

assessment is still missing, especially in farm animals. With my current research, I would like to 
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contribute to compensating for this lack of knowledge by examining HCCs in cattle and pigs. 

Therefore, the general aims of the present work are to investigate influencing factors on HCC, 

including animal-based, seasonal and hair-specific factors as well as contamination and elimination, 

and to examine the potential of hair cortisol concentration as an indicator of long-term stress in 

cattle and pigs. The following chapters provide the most important background information for 

contemporary hair cortisol studies. After giving an overview of the principles of farm animal welfare 

and an explanation of the stress response in mammals, basic knowledge about hair as biological 

material is presented. In this context, different pathways of cortisol incorporation and elimination 

are described. Following this introductory part of the thesis, I give an overview of the specific aims 

and hypotheses of the present studies, which are presented in detail in the results section as 

publications comprising a literature review (Study 1) and three experimental studies (Studies 2–4). 

The present work is therefore a cumulative dissertation containing four peer-reviewed papers 

published in an international journal. Finally, all results are discussed in general against the 

background of the current state of knowledge, including an evaluation of the usability of hair 

cortisol concentrations in cattle and pigs and the presentation of future perspectives for further 

research and applications. 
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2 Review of the literature 

2.1 The relevance of stress assessment in animal welfare 

 A common biological definition of stress introduced by BROOM and JOHNSON (1993) is ‘an 

environmental effect on an individual which overtaxes its control systems and reduces its fitness’. 

SELYE (1975) differentiated the terms ‘distress’, the negative, pathological form of stress, and 

‘eustress’, the positive form of stress with beneficial outcomes. The terms ‘stress’ and ‘distress’ are 

often used interchangeably, as negative stress is the most commonly mentioned type of stress. 

Thus, stress is a state of threatened physiological and/or psychological homeostasis to which the 

organism reacts with behavioural and physiological responses called ‘adaptation’ and ‘coping’ 

(LAZARUS and FOLKMAN 1984, SCHNEIDERMANN et al. 2005, CHROUSOS 2009). These stress 

responses are beneficial for the organism as long as they enable it to adapt to and overcome 

challenges. However, due to a severe stressful event or particularly long-term stress, coping and 

adaptation may fail to return an organism to physiological and/or psychological homeostasis, 

leading to maladaptation with deleterious effects on health and welfare (MOBERG 2000, YARIBEYGI 

et al. 2017). 

 The current understanding of animal welfare as a measure of the animals’ quality of life has 

developed in the context of the social and cultural history of animal care and use and has roots in 

an expanding knowledge base of animal physiology and ethology (NATIONAL RESEARCH COUNCIL 

2008). Broad public interest in animal welfare was first awakened by the publication of the book 

Animal Machines by HARRISON (1964), which depicted the husbandry conditions of the time and 

the associated suffering of farm animals (FRASER 2008). In reaction, the British government 

appointed a committee under the leadership of Professor F. W. Rogers Brambell to investigate ‘the 

welfare of animals kept under intensive livestock husbandry systems’ (BRAMBELL et al. 1965). A 

main finding of these investigations was that animal welfare is particularly dependent on both the 

physical and the mental wellbeing of the animal. To properly consider both these aspects and to 

grant animals basic freedoms, the Farm Animal Welfare Council developed ‘five freedoms’ based 

on the recommendations of the Brambell Report (WEBSTER 1995): 1) freedom from hunger and 

thirst, 2) freedom from discomfort, 3) freedom from pain, injury or disease, 4) freedom to express 

normal behaviour, and 5) freedom from fear and distress. Although the formulation of these 

freedoms was a good start towards improving conditions in animal husbandry, they reflect an 

ethical, anthropocentric view rather than a scientific one (KORTE et al. 2007). Another approach to 

defining animal welfare was therefore to examine both brain and periphery states in relation to the 

environmental challenges that led to those states (KORTE et al. 2007). Not constancy or freedoms, 

but capacity to change is crucial to good health and welfare (KORTE et al. 2007). In contrast to 

homeostasis, allostasis concept describes the process of achieving ‘stability through changes’ 
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(STERLING and EYER 1988) that enable an animal to respond to changing circumstances (MCEWEN 

and WINGFIELD 2010). BROOM (1986) formulated a widely used definition of welfare:  

 ‘The welfare of an individual is its state as regards its attempts to cope with its 

 environment. Coping can sometimes be achieved with little effort and expenditure of 

 resources, in which case the individual’s welfare is satisfactory. Or it may fail to cope 

 at all, in which case its welfare is obviously poor’.  

How well an animal can cope with challenging situations depends on individual constitution, 

personality, previous experiences, and the nature of the challenging circumstances (KOOLHAAS et 

al. 1999, TILBROOK and RALPH 2017). Coping can be either neuroendocrine, behavioural, 

autonomic, immunological, or most of all a combination of these mechanisms (KOOLHAAS et al. 

1999). Thus, animal-based indicators for the assessment of welfare comprise physiological 

measures (e.g. indicators of stress) as well as behavioural measures and clinical signs.  

 

2.2 Stress response in mammals 

2.2.1 Structure and function of the hypothalamic-pituitary-adrenal axis 

 A major system of the physiological stress reaction that plays an important role in the 

adaptive response to long-term stress is the hypothalamic-pituitary-adrenal axis (Fig. 1) (JACOBSON 

2005). 

 

Fig. 1: Structure of the HPA axis; the response to stress (blue arrows) and the negative feedback 

loop (red arrows) 
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 Neurons whose cell bodies are located in the hypothalamus (specifically, the Nucleus 

paraventricularis) produce corticotrophin-releasing hormone (CRH) and neurohormone arginine 

vasopressin (AVP) (SAPOLSKY et al. 2000, SPENCER and DEAK 2017). When an organism is 

confronted with stressors, CRH is released and stimulates the G-protein-coupled CRH-receptor-1 in 

the endocrine cells of the anterior pituitary (JACOBSON 2005). There, these corticotrophs release 

the adrenocorticotrophic hormone (ACTH), which is a cleavage product of proopiomelanocortin 

(SPENCER and DEAK 2017). Especially during repeated or chronic stimulation of the hypothalamus, 

AVP may function as a co-factor for the activation of ACTH-producing corticotrophs (SPENCER and 

DEAK 2017). In the adrenal glands (specifically, the zona fasciculate), ACTH leads to the conversion 

of cholesterol into glucocorticoids (GCs) by stimulating the melanocortin-2 receptor and finally the 

release of GCs into the blood (JACOBSON 2005). Hence, the HPA axis is a classical neuroendocrine 

system that serves to control adrenocortical GC secretion by the brain. Glucocorticoids, such as 

cortisol and corticosterone, have numerous effects on peripheral tissues, which can roughly be 

summarised as the organisation of energy consumption and energy distribution to overcome the 

homeostatic challenge caused by stress (JACOBSON 2005). Furthermore, the increased secretion of 

GCs has a regulating effect on the HPA axis itself. As a consequence of this negative feedback, the 

release of CRH and ACTH is inhibited, thus reducing the production of GCs. Therefore, the plasma 

levels of GCs are always within a species-specific physiological range if all organs involved are 

functioning properly. 

 

2.2.2 Characteristics and effects of cortisol 

 The main glucocorticoid in most mammals and fishes is cortisol, whereas in rodents and 

birds it is corticosterone (JACOBSON 2005, SPENCER and DEAK 2017). Cortisol belongs to the class 

of steroid hormones and is released in a pronounced pulsatile and circadian rhythm depending on 

the day-night cycle. In diurnally active animals, cortisol peak levels are observed during the early 

morning, while nadir levels occur in the evening. In nocturnal animals, this cycle is reversed 

(JACOBSON 2005, FRIES et al. 2009, MÖSTL 2014). Steroid hormones are characterised by their 

typical biochemical structure of 17 carbon atoms arranged in four ring systems (GRANNER et al. 

2015). Due to its liposolubility, the cortisol molecule can passively diffuse into cells across the 

phospholipid bilayers and activate intracellular receptors. There are two GC receptors: the 

mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) which both belong to the 

transcription factor (REUL and DE KLOET 1985, GRANNER et al. 2015). After binding cortisol in the 

cytoplasm, the receptor is activated and translocated into the cell nucleus. Locally, the receptor 

binds to deoxyribonucleic acid (DNA), modulates the transcription of specific genes, and thereby 

influences the synthesis of proteins (DE KLOET et al. 1998, 2005). Besides this receptor-mediated 

regulation of gene expression (genomic effects), which reacts with a slight delay, steroid receptors 
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also act due to rapid, receptor-mediated effects (non-genomic effects) (GROENEWEG 2011). This 

DNA-binding-independent functioning can be achieved due to protein-protein interactions with 

other transcription factors and enables, for instance, the negative feedback of cortisol on the HPA 

axis (GROENEWEG 2011). Cortisol can react with both MRs and GRs but binds with a tenfold higher 

affinity to MRs (SPENCER and DEAK 2017). Due to its numerous biological functions, cortisol is not 

only an important hormone in the stress response but also has various regulatory effects in the 

whole organism. As part of the provision of energy substrates, cortisol inhibits the uptake of glucose 

into cells and stimulates gluconeogenesis, which increases the glucose level in the bloodstream 

(KUO et al., 2015). Additionally, it inhibits lipogenesis, increases the decomposition of proteins and 

bones, and thereby influences muscle growth and the occurrence of osteoporosis (LUKERT and 

RAISZ 1990, GRANNER et al. 2015). In the gastro-intestinal system, the blood supply and secretion 

of digestive enzymes, protective mucus and saliva declines, while the production of gastric acid 

increases, elevating the risk of ulcer formation due to excessive cortisol release (YARIBEYGI et al. 

2017). In addition, cortisol can increase blood pressure and heart rate and inhibit the immune 

system through various mechanisms (GRANNER et al. 2015, YARIBEYGI et al. 2017). Furthermore, 

cortisol facilitates the foetal development of organs such as the eyes, nervous system, and lungs 

(CHALLIS et al. 2001, GRANNER et al. 2015). 

 

2.2.3 Conventional biological matrices for cortisol analysis 

 Cortisol is commonly used as an individual-based physiological indicator to assess stress, 

and its altered secretion is traditionally measured in blood samples (MORMÈDE et al. 2007). In 

mammals, cortisol is transported in the bloodstream mainly by binding to proteins, such as 

corticosteroid-binding globulin. About 90% of systemic cortisol is bound, while the remaining 10% 

is unbound in the bloodstream (MENDEL 1989, SPENCER and DEAK 2017). According to the free 

hormone transport hypothesis (MENDEL 1989), only unbound cortisol can diffuse into target 

tissues, so the cortisol concentrations detected in saliva samples, for example, are a reflection of 

this free cortisol fraction. Due to its simple and minimally invasive sampling procedure, salivary 

cortisol is applied increasingly frequently, especially for the repeated determination of cortisol in 

human and animal research (NEGRÃO et al. 2004, HELLHAMMER et al. 2009, MUNSTERHJELM et al. 

2013). After a short half-life of about 15 minutes, cortisol is converted into biologically inactive, 

water-soluble metabolites that are predominantly excreted with urine and to a lesser extent with 

faeces (MÖSTL and PALME 2002, SPENCER and DEAK 2017). Cortisol and its metabolites can 

therefore also be determined in urine and faeces samples. All these biological matrices have their 

advantages and disadvantages, which various review articles have presented in detail (MORMÈDE 

et al. 2007, NOVAK et al. 2013, SPENCER and DEAK 2017). Blood, saliva, urine and faeces samples 

differ, for example, in their stability and storage possibilities, invasiveness of collection and 



2 Review of the literature 

7 

dependence on the circadian rhythm. Cortisol measurements in blood and saliva samples reflect 

only the short-term hormone levels of the preceding minutes or hour and are therefore best suited 

to assess acute stress. Cortisol analysis in urine and faeces reveals average cortisol concentrations 

over periods ranging from hours (urine) to days (faeces), so if the aforementioned conventional 

matrices are used to assess long-term stress (weeks to month), it would be necessary to perform 

repeated sampling. Furthermore, the cortisol concentration in these biological materials is strongly 

influenced by short-term fluctuations in cortisol release, such as circadian rhythms, stress due to 

the sampling procedure, food intake, and exercise (OTOVIC and HUTCHINSON 2015).  

 

2.3  Hair as a matrix for cortisol analysis 

2.3.1 Hair structure and hair types 

 In mammals, hair is a skin appendage located in the epidermis and surrounded by sweat 

glands, sebaceous glands, and the erector muscle (HARKEY 1993, PRAGST and BALIKOVA 2006). 

Macroscopically, hair can be categorised into two main parts: the hair shaft and hair root (BOUMBA 

et al. 2006) (Fig. 2). The hair shaft is a dead, metabolically inactive tissue (PRAGST and BALIKOVA 

2006) that protrudes above the skin and is therefore visible. The hair shaft consists of protein 

complexes (65–95%), water (15–35%), lipids (1–9%), pigments, and small quantities of trace 

elements (KIDWELL and BLANK 1996, ROBBINS 2002), and it has three layers: the cuticle, cortex, 

and medulla (CRUZ et al. 2016). The cuticle is an outer hydrophobic protection layer. Interestingly, 

although the cuticle is hydrophobic, its inner layers have hydrophilic properties and are therefore 

prone to swelling in aqueous liquids (ROBBINS 2002, KIDWELL and SMITH 2007). As a result, hair 

samples that appear dry from the outside may contain up to 30% moisture by weight (ZAHN 1989, 

CRUZ et al. 2016). The cuticle consists of flat, keratinised cells that overlap like roof tiles (HARKEY 

1993, KIDWELL and BLANK 1996). The largest part of the hair shaft is called the cortex and consists 

of long, stratified, keratinised cells that form spindle-shaped fibres (CRUZ et al. 2016). This typical 

structure of macro- and microfibrils connected by cell membrane complexes is the reason for the 

flexibility of the hair shaft (ROBBINS 2002). Additionally, the cortex contains pigment granules filled 

with melanin, which gives the hair a typical colour and supports its photoprotective properties by 

dissipating absorbed ultraviolet radiation (HOTING et al. 1995, MADEA 2004). Melanin is produced 

in melanocytes located in the distal part of the hair root. There are two types of melanin: eumelanin 

(brown and black) and pheomelanin (red) (BOUMBA et al. 2006, CRUZ et al. 2016). The central part 

of the hair shaft is the medulla. It is surrounded by the cortex and consists of a thin cord of larger 

cells among air-filled spaces. The function of the medulla is still not fully understood, and not all 

hairs contain this part (HARKEY 1993, ROBERTSON 1999). 
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Fig. 2: Hair structure 

 

The second main part of the hair – the hair root or hair follicle – is located approximately 

2–4 mm below the skin surface (cattle: 2 mm (UDO 1978), pigs: 3.5 mm (personal data), humans: 4 

mm (MADEA 2004)). The lowest part of the hair follicle is thickened and forms the hair bulb (CRUZ 

et al. 2016). An invagination at the basal end of the bulb forms the hair papilla, through which the 

hair is supplied with blood vessels. Besides the hair bulb, the hair follicle also consists of an outer 

and an inner epithelial root sheath and a fibrous root sheath (ROBERTSON 1999, CRUZ et al. 2016). 

The epithelial root sheath is an invagination of the epidermis, the hair shaft’s anchor in the skin and 

the site of hair growth. The outer part of the hair root is the fibrous root sheath. This is where the 

musculus arrector pili is attached, which enables the hair to straighten up and contribute to 

thermoregulation (ROBERTSON 1999). 

 Due to the slightly inclined positions of hairs in the skin, they have specific growth directions 

which points in the direction of movement on the body and from proximal to distal on the legs 

(SALOMON et al. 2008). Hair density is species-specific and seasonal, and it depends on the number 

of active hair follicles (MOWAFY and CASSENS 1976b). However, the total number of hair follicles 

is already determined at the time of birth (MOWAFY and CASSENS 1976b, CRUZ et al. 2016). Hair 

types can be differentiated by their size and structure (SALOMON et al. 2008). The dominant hair 

type in most mammals is guard hair, which forms the main part of the fur, causes species-specific 

coat patterns and serves as a protective insulation layer (KONDO 2001; SALOMON et al. 2008). 

Additionally, species such as bears, boars, dogs and sheep have wool hairs, which are thin and 

puckered hairs that form an undercoat for thermal insulation (MEYER and GÖRGEN 1986, KONDO 

2001, MEINDERS 2017). Pigs are covered with special guard hairs called bristles. These are stiff hairs 

with splitting ends, which in other mammalian species only appear as protective hairs around the 

head, such as eyelashes (SALOMON et al. 2008, MOHAN et al. 2015). Particularly striking are long 
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hairs, which appear, for example, as manes and tails in horses or as tail tips in cows and are 

characterised by an exceptionally long growth phase (HARKEY 1993, SALOMON et al. 2008). 

Another special case among the hair types is tactile hairs, which are surrounded by a blood sinus 

and many nerve fibres (SARKO et al. 2011). 

 

2.3.2 Hair growth cycle 

 Hair growth takes place in the hair bulb and occurs in cycles of active growth and resting 

phases (CHASE 1954), with the rate of hair growth depending on the species and body region 

(HARKEY 1993, MADEA 2004). Active growth only occurs in the anagen phase, which is the longest 

stage and lasts , for instance, about 3–5 months in pigs (MOWAFY and CASSENS 1976a) and about 

five years in human scalp hair (CRUZ et al. 2016). During this growth phase, hair follicle cells 

differentiate and enable the hair shaft to grow (HARKEY 1993, ROBERTSON 1999). Additionally, 

melanocytes are activated to produce pigments. Since the hair follicle is supplied with blood via the 

papillae in the anagen phase, the incorporation of substances derived from the blood mainly occurs 

during this period (MEYER and NOVAK 2012). The anagen is followed by the transitional phase, 

known as catagen, which lasts about 20 days in pigs (MOWAFY and CASSENS 1976a) and several 

weeks in humans (MADEA 2004). The blood vessels begin to recede, pigmentation and 

differentiation discontinue, and the hair bulb shortens (ROBERTSON 1999). Finally, the hair reaches 

the resting phase, which is called telogen. In human scalp hair, this phase lasts about three months 

(CRUZ et al., 2016), whereas in animals, the duration of this resting phase is strongly influenced by 

environmental conditions (LING 1970). In the telogen phase, the hair stops growing completely and 

is finally expelled by the appearance of a new hair (ROBERTSON 1999). In humans, scalp hairs grow 

in a mosaic pattern, so hairs are always in different growth stages beside each other. However, 

growth stages undergo seasonal changes, showing maximum telogen hairs in August and 

September (ROBBINS 2002). In most domestic mammals, hair loss is observed as a seasonal change 

of hair in the spring and autumn, a phenomenon called shedding (LING 1970, STENN and PAUS 

2001). Hair growth occurs mainly in waves with the synchronised activity of hair follicles (LING 1970, 

MEYER et al. 1980). In this way, animal species can adapt to changing climatic conditions. In 

domesticated pigs, the growth wave starts in the abdominal area and moves caudally over the sides 

to the sacral part of the back. From here, it then spreads cranially over the flanks and back to the 

head (MEYER et al. 1980). Due to domestication, a clear distinction between spring and winter 

shedding is not possible. However, at the beginning of summer, follicle activity increases and the 

hair coat becomes denser (MOWAFY and CASSENS 1976a). In cattle, clear shedding can be observed 

in the spring, with the whole body covered with loose, dull hairs (MEYER et al. 1980). In European 

cattle breeds, new summer hair first appears on the head and neck and gradually spreads towards 

the shoulders (MEYER et al. 1980). The growth wave of the regionally, synchronously developing 
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hair follicles then follows a narrow strip caudally along the spine, from where it spreads to the 

lateral body wall. The ventral flanks and abdominal region are the last parts of the body affected by 

the hair change. In contrast, shedding in autumn is comparatively inconspicuous, does not follow 

any pattern and is rather diffuse (MEYER et al., 1980). 

 

2.3.3 Incorporation of cortisol into the hair 

2.3.3.1 Passive diffusion 

 The first evidence that hair can store substances permanently emerged in the mid-19th 

century when arsenic was detected in the hair of a corpse (MADEA 2004). Almost 150 years later, 

CIRIMELE et al. (2000) detected cortisol in human hair and KOREN et al. (2002) in the hair of wildlife. 

Because research on the incorporation of drugs into human hair is more advanced than 

investigations of hair cortisol, the hypotheses on the incorporation of cortisol into hair were mostly 

adopted from drug research. At the beginning of hair research, it was assumed that substances 

were only incorporated into hair by passive diffusion from blood vessels that enter the hair root via 

the hair papillae (HENDERSON 1993). Since steroids are lipophilic hormones and can penetrate 

biological membranes passively, diffusion from the bloodstream seems the most important way to 

incorporate cortisol into the hair (HENDERSON 1993, MEYER and NOVAK 2012). Therefore, 

unbound cortisol from the blood is incorporated into the hair shaft caused by the concentration 

gradient and thus may reflect systemic cortisol concentrations. However, there is no evidence of 

where exactly steroid hormones are stored within the hair shaft. Studies from drug research have 

suggested that the stable retention of substances is mainly due to their binding to melanin and 

proteins (CONE 1996). Incorporation via passive diffusion is dependent on the blood supply, so only 

actively growing hair during the anagen phase can incorporate cortisol from the bloodstream 

(MEYER and NOVAK 2012). In addition, there is a time delay between cortisol incorporation, which 

takes place several millimetres below the skin surface, and when this hair section emerges from the 

skin surface (RUSSELL et al. 2012). 

 

2.3.3.2 Multi-compartment model 

 Besides the diffusion of cortisol from blood vessels into growing hair, substances can be 

incorporated into the hair shaft from other sources (Fig. 3). The multi-compartment model 

proposed by HENDERSON (1993) assumes that substances from the skin or the environment can 

also be integrated into the keratinised hair shaft (BOUMBA et al. 2006). Due to the structure of the 

hair and its cuticle, substances that are lipophilic, non-polar and have radii of less than 0.4 nm can 

easily penetrate the hair shaft (MADEA 2004). Previous studies showed that body fluids containing 

cortisol, such as sebum, sweat, saliva and urine, can be additional sources of cortisol (MACBETH et 

al. 2010, CATTET et al. 2014, GRASS 2017). Sebum is a complex mixture of lipids and cell debris 
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produced in small follicle-associated holocrine glands (sebaceous glands) and secreted directly into 

the hair canal (HARKEY 1993, ZOUBOULIS et al. 2016). It keeps the hair smooth and protects the 

skin from desiccation (ROBBINS 2002). Additionally, eccrine sweat glands produce and secrete 

sweat on the skin surface. Sweat is an aqueous solution consisting mainly of water and NaCl, and it 

is primarily involved in thermoregulation (BAKER 2019). Due to the proximity of the hair and these 

glands, cortisol-containing body fluids cover the hair surface and thus enable the incorporation of 

cortisol into the hair shaft. The hair, especially in animals, can also be contaminated with saliva and 

urine that contain cortisol (MÖSTL and PALME 2002). Like external contamination with body fluids, 

WANG et al. (2019) showed that exogenous cortisol from a cortisol-containing cream can be 

incorporated into the hair shaft. Furthermore, follicle cells themselves may produce cortisol and 

form an independent ‘peripheral HPA axis’ (ITO et al. 2005, SLOMINSKI et al., 2007). However, the 

quantities of this peripheral cortisol are comparatively small and therefore play only a subordinate 

role. 

 

 

Fig. 3: Pathways of incorporation and elimination of cortisol into/from the hair shaft (adapted from 

MEYER and NOVAK 2012, STALDER and KIRSCHBAUM 2012, GRASS 2017). Blood cortisol, the 

presumed main source of incorporated cortisol, is marked by green hexagons ( ) and cortisol from 

other sources by blue hexagons ( ). 
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2.3.4 Elimination of cortisol from the hair 

 Previous studies on human hair have shown that extensive cosmetic treatments, such as 

dyeing and bleaching, can reduce concentrations of substances in the hair shaft (JURADO et al. 

1997, BOUMBA et al. 2006). In this context, recent studies have investigated the impacts of 

different hair treatments on cortisol concentrations in hair and revealed contradictory results 

(HAMEL et al. 2011, DETTENBORN et al. 2012, KRISTENSEN et al. 2017). However, a meta-analysis 

of the various determinants of hair cortisol in humans showed that the influence of hair-washing 

frequency and hair treatment might be low (STALDER et al. 2017). Nevertheless, STALDER et al. 

(2017) recommended that the impact of these factors should be considered in future research. 

Frequent washing or chemical and physical treatment, such as dyeing, bleaching and brushing, may 

damage hair cuticles (DAWBER 1996, ROBBINS 2002, DIAS 2015) and thus leach cortisol. When 

examining hair segments by cutting hair strands into several pieces and analysing them separately, 

KIRSCHBAUM et al. (2009) observed a decline in cortisol concentrations from the proximal to the 

distal part of the hair, the so-called ‘washout effect’. STALDER et al. (2017) confirmed these findings 

and showed a decline of 29% in HCC from the first proximal 3 cm to the following distal 3 cm 

segments of the human hair shaft. Distal hair segments may be exposed to external influences 

longer than proximal segments and thus may have a more damaged hair structure (DAWBER 1996). 

Therefore, the impact of external influences could be greater and the loss of cortisol could be higher 

with increasing distance from the skin surface. In addition to washing and shampooing hair in 

humans, exposure to rain or bathing in natural waters may have a similar washout effect on cortisol 

levels in animal hair. Furthermore, previous studies have shown a significant decrease in HCCs after 

exposure to natural sunlight and artificial light (GRASS et al. 2016, WESTER et al. 2016), presumably 

due to the enhanced degradation of cortisol, as radiant energy seems capable of directly destroying 

incorporated substances (GRASS et al. 2016). 

 

2.3.5 Specific characteristics and applications of hair cortisol 

 Due to continuous hair growth and the associated incorporation of cortisol into the hair 

shaft, the cortisol level in a hair sample reflects the HPA axis activity from the entire period of hair 

growth (MEYER and NOVAK 2012, STALDER and KIRSCHBAUM 2012). Since hair growth lasts several 

months to years (MOWAFY and CASSENS 1976a, BINZ and BAUMGARTNER 2016), hair as a 

biological matrix may be a promising indicator for the assessment of long-term stress. Since cortisol, 

which is incorporated into the hair shaft, has a high stability when protected from light, hair samples 

can easily be stored at room temperature in the dark (RUSSELL et al., 2012). In addition, sampling 

hair is minimally invasive, and the procedure itself has no influence on the cortisol in the collected 

sample (RUSSELL et al. 2012, STALDER and KIRSCHBAUM 2012). Another special characteristic of 
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hair as a sampling material is the possibility of using it as a ‘retrospective calendar’ (KIRSCHBAUM 

et al. 2009). Barring cortisol-degrading influences, the continuous incorporation and stable 

retention of cortisol in the hair shaft during hair growth capture the average cortisol concentrations 

of the previous months and possibly years, depending on the hair length (KIRSCHBAUM et al. 2009). 

Assuming a hair growth rate of one centimetre per month in human scalp hair (BINZ and 

BAUMGARTNER 2016), the proximal centimetre above the skin represents the last month of hair 

growth, the next distal centimetre the second last month and so on (RUSSELL et al. 2012). In 

humans, analysing hair segments is thus increasingly common to monitor the therapy of patients 

with hyper- or hypocortisolism, for example (THOMSON et al. 2010, GOW et al. 2011, HODES et al., 

2018) or to assess cortisol fluctuation during pregnancy (D’ANNA- HERNANDEZ et al. 2011, BRAIG 

et al. 2015). Research on hair cortisol in humans has focused on changes in cortisol related to 

mental health, including psychiatric disorders (VIVES et al. 2015, STALDER et al. 2017) and various 

social stressors, such as unemployment (DETTENBORN et al. 2010) and stress at school 

(GROENEVELD et al. 2013, MINKLEY et al. 2015). Furthermore, hair cortisol analysis is also used in 

the diagnosis, prognosis and therapy of other clinical conditions, such as Cushing syndrome, adrenal 

insufficiency and cardiovascular disease (WESTER and VAN ROSSMUN 2015, GREFF et al. 2019, IOB 

and STEPTOE 2019). Besides, there is first evidence that stress management can help to reduce 

stress and thus lower hair cortisol concentrations (IGLESIAS et al. 2015). 

 When investigating the impacts of different stressors on HCC, it was found that non-stress-

related factors also influence the incorporation and elimination of cortisol into/from the hair shaft 

(STALDER et al. 2017). These influencing factors can be categorised into individual- or animal-based 

factors, as well as seasonal and hair-specific factors. Individual-based factors include, for example, 

the age and sex of the individual and the reproductive cycle in females. These factors are directly 

dependent on physiological fluctuations in HPA axis activity, such as increased systemic cortisol 

levels prior to delivery (OBEL et al. 2005). Hair-specific influencing factors can be derived from the 

special characteristics of hair as a biological sampling material. Due to the pigmentation of the hair 

and the potential light-protecting and binding properties of melanin, the colour of the hair sample 

can influence hair cortisol levels (STAUFENBIEL et al. 2015, BINZ et al. 2018). In addition, varied 

blood supply, skin temperature and external influences on different body regions can influence the 

HCC in the sampling region (SHARPLEY et al. 2010, LI et al. 2012). 
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3 Research focuses and aims 

 Under commercial husbandry conditions, farm animals can be exposed to various stresses 

and strains caused by poor housing conditions, for instance. Since stress can compromise animal 

welfare and lead to impaired product quality, interest is growing in the study of stress indicators 

and their application in monitoring programmes. Previous studies in various species have shown 

that hair cortisol concentration seem to be a promising retrospective marker of systemic cortisol 

levels and therefore a possible long-term indicator of stress. Thus, the general aims of the present 

work are to investigate influencing factors on HCC, and to examine the potential of hair cortisol 

concentration as an indicator of long-term stress in cattle and pigs. For this purpose, four studies 

have been conducted which build on each other (Fig. 4). First of all, the aims of Study 1 were to 

present the current state of knowledge regarding the possible use of HCCs for the assessment of 

stress in non-human animals and to identify knowledge gaps in hair cortisol research as a basis for 

subsequent studies. Considering the findings of this review, Study 2 aimed to identify the impact of 

the potential influencing factors on HCCs in cattle and pigs. After that, the aim of Study 3 was to 

investigate whether and when long-term increased systemic cortisol levels were reflected in 

elevated HCCs in these species. Based on the results of Studies 2 and 3 and on hints in the literature, 

I assumed that in addition to the influencing factors already examined, contamination and 

elimination by washout may affect HCCs. Thus, Study 4 was conducted to investigate the impact of 

contaminating hair with cortisol-containing body fluids and the elimination effect of water 

treatment on hair cortisol levels in vitro. 

 For Study 1, I performed extensive literature research and presented the results as a review 

article. Hair-specific characteristics, including the benefits and limitations of hair, were summarised 

and compared with other sampling materials for cortisol analysis. After an overview of the impact 

of stressors, various non-stress-related factors were identified that may influence the cortisol 

concentrations in animal hair, and practical recommendations for the use of hair cortisol were 

given. 

 Considering the findings of that review, Study 2 focused on investigating influencing 

factors, including animal-based, seasonal and hair-specific variables, such as age and sex, hair 

colour, sampling region and hair segments. It is assumed that hair cortisol levels reflect variations 

in HPA axis activity and hair-specific differences due to growth, location and maturation of the hair. 
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Fig. 4: Overview of the studies conducted within the present thesis 

 

 In Study 3, we examined the effect of long-term stress, the best time for hair sampling after 

a period of long-term stress and the most suitable type of hair samples. For these purposes, 

repeated intramuscular (i.m.) injections of ACTH were administered to induce HPA axis activity and 

simulate long-term stress over four weeks. The HCC analysis was performed in three different hair 

sample types (natural, regrown and segmented hairs) at four sampling times. Based on average hair 

growth rates in cattle and pigs, models for the time course of cortisol incorporation into the hair 

shaft were established, and we tested whether and after what time period long-term elevated 

systemic cortisol levels were reflected by increased cortisol concentrations in different hair sample 

types. It was hypothesised that repeated ACTH administrations increased cortisol concentrations in 

all hair sample types, with a higher magnitude in regrown hair and the highest levels within four 

weeks after the stress period. 

 As a follow-up to the findings of Studies 2 and 3, Study 4 was conducted. In this in vitro 

study, bovine and porcine hair samples were repeatedly contaminated with urine, saliva and faeces 

of the respective species, treated with water or left untreated. A potential relationship between 

the cortisol concentration in the contaminating fluid and the amount of cortisol incorporated into 

the hair was considered using urine and saliva with physiologically high and low cortisol 

concentrations. This study was based on the hypothesis that externally contaminating hairs with 

body fluids increases their cortisol concentrations depending on the cortisol concentration in the 

fluid.   
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4 Results 

4.1 Study 1: Hair cortisol for the assessment of stress (review) 

 

The use of hair cortisol for the assessment of stress in animals 

Susen Heimbürge, Ellen Kanitz, Winfried Otten 

 

This work was published in General and Comparative Endocrinology 270 (2019) 10–17 

 

Highlights: 

 Hair cortisol concentration (HCC) is a useful biomarker of long-term stress. 

 Minimally invasive hair sampling offers many benefits in animal-welfare research. 

 Age, pregnancy, hair colour, body region, sex and season of year may affect HCC. 

 Sampling protocols with a standardisation of interfering factors should be used. 

 

Statement of contribution: 

My own contribution to the first publication of my thesis comprised the conceptualisation of the 

manuscript, the literature research and the interpretation and summary of the findings considering 

their relevance. I wrote and submitted the manuscript with the support of and in agreement with 

the co-authors. 
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4.2 Study 2: Effects of animal-based, seasonal and hair-specific factors on hair cortisol 

concentrations 

 

Within a hair’s breadth – Factors influencing hair cortisol levels in pigs and cattle 

Susen Heimbürge, Ellen Kanitz, Armin Tuchscherer, Winfried Otten 

 

This work was published in General and Comparative Endocrinology 288 (2020) 113359 

 

Highlights: 

 Various factors may influence hair cortisol concentration (HCC) in pigs and cattle. 

 HCC is affected by body region, age, hair colour and season of sampling. 

 Distal hair segments exhibit higher HCCs in both species. 

 There were no differences in HCC between the sexes. 

 

Statement of contribution: 

For the second publication, I designed and performed the experiments in consultation with the co-

authors of the manuscript and with the support of technicians at the Institute of Behavioural 

Physiology. I analysed the data and presented and interpreted the results. The final manuscript and 

figures were prepared with the support of and in agreement with the co-authors.   
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4.3 Study 3: Effects of long-term stress on hair cortisol concentrations 

 

Is it getting in the hair? Cortisol concentrations in native, regrown and segmented hairs of cattle 

and pigs after repeated ACTH administrations 

Susen Heimbürge, Ellen Kanitz, Armin Tuchscherer, Winfried Otten 

 

This work was published in General and Comparative Endocrinology 295 (2020) 113534 

 

Highlights: 

 Repeated ACTH applications increase hair cortisol levels (HCC) in cattle and pigs. 

 In cattle, HCCs in natural, regrown and segmental hair reflect HPA axis activity. 

 Pigs show a blunted cortisol response and no differences in HCCs between groups. 

 Seasonal hair growth and contamination may also mask treatment effects in pigs. 

 

Statement of contribution: 

I contributed to the third study by designing and conducting the experiments and analysing the 

sampling material with the assistance of technicians at the Institute of Behavioural Physiology. 

Additionally, I gathered and analysed the data, interpreted the results and prepared the manuscript 

and figures, which were edited by the co-authors before submission.  
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4.4 Study 4: Effects of contamination and elimination on hair cortisol concentrations 

 

It’s getting hairy – External contamination may affect the validity of hair cortisol as an indicator 

of stress in pigs and cattle 

Winfried Otten, Susen Heimbürge, Ellen Kanitz, Armin Tuchscherer 

 

This work was published in General and Comparative Endocrinology 295 (2020) 113531 

 

Highlights: 

 External factors can influence hair cortisol concentrations (HCCs). 

 Contamination is a confounding factor on HCC in pigs and cattle. 

 Cortisol in urine causes a concentration-dependent increase in HCC. 

 Repeated treatment with water leads to washout of cortisol from porcine hair. 

 

Statement of contribution: 

My contribution to the fourth study of my thesis comprised the conceptualisation, practical 

experimental work and analyses of the sampling material with the support of technicians at the 

Institute of Behavioural Physiology. In collaboration with the co-authors, the results were 

interpreted and the figures were prepared. Dr Winfried Otten wrote the first draft of the 

manuscript, which was edited by Dr Ellen Kanitz and me before it was submitted to the journal.  
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5 General discussion 

 As detailed discussions of the results have already been conducted separately in each 

publication, this general discussion will comprehensively discuss the most important findings of our 

studies. Based on the aims of my thesis and the specific approaches of the studies, the general 

discussion has two main sections: the dependence of hair cortisol levels on influencing factors and 

the impact of long-term stress. Therefore, I will first highlight the basic determinants that may cause 

fluctuations in systemic cortisol concentrations independent of stress and that may affect hair 

cortisol concentrations. In addition, the impact of hair-specific factors and of external 

contamination and elimination by washout on hair cortisol levels will be discussed. The second part 

of the general discussion comprises the applicability of hair cortisol as an indicator of long-term 

stress in cattle and pigs. Background information on the application of the ACTH model for the 

simulation of long-term stress is given, and models for the time course of cortisol incorporation into 

the hair of cattle and pigs are presented. The influence of hair sample type and sampling time on 

the incorporation of cortisol will also be evaluated. At the end of each main section, implications 

are presented and recommendations for the use of hair cortisol are given. Finally, possible future 

research approaches and applications of hair cortisol measurements under practical and 

experimental conditions are derived. 

 

5.1 Influencing factors on hair cortisol concentrations in cattle and pigs 

5.1.1 Impact of animal-based, seasonal and hair-specific factors 

 The literature review identified various factors that may influence cortisol concentrations 

in animal hair. Therefore, our experiments investigated the animal-based determinants in cattle 

and pigs, such as age and sex, hair-specific characteristics, such as hair colour, body region, hair 

segment age and season. 

 We found elevated cortisol levels in the hair of newborn cattle and pigs as well as adult 

sows. Newborn calves showed hair cortisol levels approximately nine times higher and piglets three 

times higher than the infantile, juvenile and adult age groups of their species. Since the hair of 

newborn animals is predominantly grown in utero (MEYER and GÖRGEN 1986), this increase may 

be due to elevated maternal and foetal cortisol levels during late gestation and around birth 

(KANITZ et al. 2012, OTTEN et al. 2013). Newborn animals also exhibit higher total cortisol and lower 

corticosteroid-binding globulin levels in plasma, which may lead to higher concentrations of 

unbound cortisol (KANITZ et al. 2012, GRANT et al. 2017) and thus to a higher incorporation of 

cortisol in the hair. A few weeks after birth, shedding of birth coat occurs (SLEE 1963, LING 1970), 

which is probably the reason for the marked decrease in HCC at this time. The results also revealed 

a higher HCC in sows than in younger age groups. This effect may be due to lower sensitivity of the 
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HPA axis with age, which has been found in older age groups of other species (SAPOLSKY et al. 1986, 

DETTENBORN et al. 2012, FOURIE et al. 2015). However, this age-related increase was observed in 

pigs but not cattle, possibly because hair samples were collected from sows during the insemination 

period. Previous studies have shown that sows exhibit higher HCCs during the insemination period 

than at other stages of the reproductive cycle, probably also due to the preceding increase of 

cortisol levels during late pregnancy and around birth (BACCI et al. 2014, personal data). 

 Studies of various species have found hair cortisol levels to depend on sex (humans: 

STALDER et al. 2017, pigs: BERGAMIN et al. 2019, horses: MEDILL et al. 2015, goats: DULUDE-DE 

BROIN et al. 2019, muskoxen: DI FRANCESCO et al. 2017). These differences may be caused by 

varying systemic cortisol concentrations due to sex-specific hormonal changes in the stress 

response (RAVEN and TAYLOR 1996, TURNER et al. 2012). Furthermore, males and females may 

exhibit divergent behavioural patterns, such as mating rituals and territorial fights, which could also 

lead to different cortisol release (BERGMAN et al. 2005). In our study, the sex of the cattle and pigs 

had no influence on their HCCs. However, hair samples from animals of both sexes could only be 

collected from calves and piglets shortly after birth because in later age groups only castrates were 

available. Thus, animals in our study were not fully influenced by sexual hormones, as is the case 

with intact, adult animals. A reason for the missing differences between females and males in our 

study could therefore be the lack of sample material from sexually mature animals. 

 Regarding a potential effect of the season of the year on hair cortisol concentrations, we 

observed alterations only in cattle hair, which showed higher cortisol levels in winter than summer. 

The seasonality of HCC can be caused by numerous influencing factors that vary over the year, such 

as temperature, daylight and seasonal sexual, territorial and nutritional behaviours (BOSWELL et al. 

1994, VENTRELLA et al. 2018). In our study, the length of daylight was chosen as the decisive factor 

for the classification of summer and winter, so hair samples were taken around the summer and 

winter solstice. Since the pigs were kept indoors all year round, changes in daylight length and 

ambient temperature were less likely to affect the incorporation of cortisol into hair. However, the 

cattle in our study were kept under freely ventilated loose housing conditions and thus may have 

been more affected by changing environmental conditions. Previous studies have shown that both 

natural sunlight and ultraviolet (UV) radiation can degrade hair cortisol (GRASS et al. 2016, WESTER 

et al. 2016). Thus, the lower hair cortisol levels in cattle hair during summer may be a result of this 

photodegradation. However, since there was no effect of seasonality in pigs and even in cattle, the 

quantitative difference in HCC was comparatively small (winter: 8.6 pg/mg, summer: 6.2 pg/mg), 

the impact of seasonality under such housing conditions seems to be low. 

 In addition to animal-based and seasonal factors, the impact of various hair-specific factors 

on HCCs, such as hair growth rate, body region, hair colour and hair segment, was investigated. For 

better interpretation of HCCs in different body regions, the growth rates of hair from the tail, 
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shoulder, back and neck regions were determined. Hair growth rates in the tail tip were 

approximately 5.6 times higher in cattle and 2.0 times higher in pigs than in other regions. These 

differences may be caused by variations in blood supply or diverging hair types in the examined 

regions (HARKEY 1993, MADEA 2004). In addition, we also found differences in hair cortisol levels 

between body regions. Cortisol concentrations in hairs in the tail tip were three times higher than 

concentrations in hair on the shoulder and back in cattle and up to six times higher than in the neck 

and back regions in pigs. Possible reasons for these differences in cortisol incorporation include the 

predominant hair colour and hair type in the body region as well as external factors: back regions 

could be more exposed to weather conditions such as sunlight or rain, degrading or washing out 

the cortisol in the hair (STALDER and KIRSCHBAUM 2012, GRASS et al. 2016, WESTER et al. 2016). 

However, regions such as the tail or abdomen could be more exposed to soiling by urine and faeces, 

which can confound hair cortisol levels due to contamination (MACBETH et al. 2010). 

 The results concerning the influence of hair colour on hair cortisol levels in cattle and pigs 

revealed higher cortisol concentrations in black samples than white samples in both species. 

However, the quantitative difference in cortisol between black and white hair was smaller than the 

impact of other influencing factors, such as age and body region. To date, the underlying 

mechanisms causing the cortisol differences between hair colours have not been fully deciphered. 

Presumably, the amount of melanin in the hair significantly affects both the incorporation and 

degradation of cortisol in the hair shaft. Black hair could lead to higher skin temperatures and thus 

increased blood flow in the skin, promoting the incorporation of cortisol via blood vessels (BURNETT 

et al. 2014). Furthermore, melanin itself appears to facilitate the incorporation of lipophilic 

substances, such as steroids (PRAGST and BALIKOVA 2006). However, our results showed an 

influence of hair colour in natural but not newly regrown hair, suggesting that cortisol differences 

between hair colours may be due to external influences rather than a variation in cortisol 

incorporation. Natural hair is older and therefore exposed to external influences for longer periods 

than newly grown hair. Hence, this effect may only be observed in samples containing older hairs. 

Consistent with our results, an effect of hair colour was found when studying the photodegradation 

of drugs in hair with higher degradation in bright hair than in dark hair (FAVRETTO et al. 2014). 

Eumelanin pigments in black hair can shield and absorb UV radiation, thereby protecting proteins 

and other substances such as drugs and GCs from photodegradation (HOTING et al. 1995, 

FAVRETTO et al. 2014). Thus, the higher degradation of cortisol in white hair may contribute to 

lower HCC in samples of this hair colour. 

 In addition, the influence of the age of hair segments on hair cortisol concentrations was 

examined. For this purpose, the tail hair of cattle was cut into three 2-cm segments and hair from 

the back regions of pigs was cut into four 1-cm segments. The results showed a marked increase in 

HCC from the proximal to the distal hair segment. Cortisol levels in the most distal segments were 
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approximately 11 times higher in pigs and 2.5 times higher in cattle than in the proximal segments. 

External influences, such as sunlight, hair washing and natural friction, can damage the cuticle cells 

of the hair, resulting in progressive surface destruction of the hair shaft with increasing hair length 

(DAWBER 1996, RICHENA and REZENDE 2016). This may facilitate the incorporation of external 

cortisol into the hair shaft and the elimination of incorporated cortisol from the hair, such as by hair 

washing (GRASS 2017). Consistent with this assumption, human hair often shows a decrease in 

HCCs from proximal to distal segments, which is probably caused by frequent hair washing and 

other hair treatments (STALDER et al. 2017). Because systemic cortisol can be excluded as a source 

of the observed increase of HCCs along the hair shaft in our studies, external influences due to 

species-specific husbandry conditions and behaviour are likely. The main reason for increased HCC 

along the hair shaft is presumably the enhanced, prolonged contamination with cortisol-containing 

fluids, such as urine and saliva. 

 

5.1.2 Impact of contamination and elimination by washout 

 The findings that caudal body regions and distal hair segments exhibit elevated HCCs led to 

the hypothesis that cortisol contained in body fluids, such as urine, saliva and faeces, may be 

incorporated into the hair shaft by external contamination. The result that control pigs showed a 

similar increase of HCC as ACTH animals after the treatment period also supports this hypothesis. 

Since ACTH and control animals were kept in mixed groups under conventional housing conditions 

on slatted floors, hairs from control animals could be contaminated with body fluids from ACTH-

treated animals by lying on soiled floors or by social interactions. Thus, HCC in control pigs might 

be elevated by the diffusion of external cortisol derived from the urine, saliva or faeces of ACTH 

pigs. To test this hypothesis, an in vitro experiment was performed in which bovine and porcine 

hair samples were repeatedly contaminated over four weeks with either urine or saliva containing 

two different concentrations of cortisol, contaminated with faeces or washed with water and then 

compared with HCCs in untreated control samples. The contamination of hair with urine resulted 

in increased cortisol levels in the hairs of both cattle and pigs, whereas saliva, which contained less 

cortisol than the urine, increased HCC only in bovine hair. Furthermore, the results show that the 

incorporation of cortisol into hair depends on the cortisol concentration in urine and saliva. 

Therefore, these findings confirm our hypothesis and provide preliminary evidence that 

contaminating of hair with body fluids increases HCCs by a concentration-dependent incorporation 

of external cortisol from the fluids into the hair. 

 Further, the results show that contamination with a faecal solution leads to an increase in 

cortisol concentrations in bovine hair but to a decrease in porcine hair. This may be due to species-

specific differences in cortisol excretion in faeces, as a previous study showed that pigs excreted 

less cortisol in their faeces than ruminants (PALME et al. 1996). Furthermore, the faecal samples 
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were diluted with water, which in addition to the already low cortisol concentration in pig faeces, 

can even lead to washout. Repeated treatment with water alone eliminated cortisol from the hair 

shaft only in pigs. In contrast, in cattle, cortisol levels in water-treated samples remained unchanged 

compared to untreated hair samples. However, the cortisol concentration in untreated porcine hair 

was markedly higher than in bovine hair, resulting in a more pronounced concentration gradient 

between water and hair in the porcine samples, which may explain these different findings. 

Consistent with the observed washout effect in porcine hair, previous in vitro studies have shown 

that hair treatment with water or shampoo solution can decrease HCC (HAMEL et al. 2011, LI et al. 

2012). Contact with aqueous liquids causes swelling of the hair (ROBBINS 2002, KIDWELL and SMITH 

2007) and can thus facilitate the incorporation and elimination of dissolved substances into and 

from the hair shaft. To avoid possible surface contamination by external cortisol, hair samples are 

usually washed before analysis. In general, as in our study, alcohol is used to remove lipophilic 

substances from the hair surface, as they hardly cause swelling. 

 Discrepancies in the contamination effects between bovine and porcine hair could also be 

due to species-specific differences in hair structure. Bovine hairs are shorter, thinner and lighter 

than porcine hair, so bovine hair samples of the same weight contain more single hairs, and more 

single hairs result in a larger total surface area of the entire sample, which could increase 

contamination effects. It has been shown that hair with cut surfaces from shaving reveal higher 

HCCs after exposure to artificial cortisol-containing solutions than intact hair (GRASS 2017). Cut hair 

ends are likely potential entry points for cortisol due to their damaged structure. Therefore, it is 

possible that in our study, cortisol incorporation in bovine hair samples was facilitated by more cut 

hair ends than in the porcine hair samples. The concentration gradient between salivary cortisol 

and hair cortisol was also markedly higher in cattle than in pigs, which may contribute to the more 

pronounced increase in HCC in cattle. 

 Overall, the in vitro experiment indicates that the contamination of hair with urine and 

saliva can strongly confound HCCs in pigs and cattle. The impact of external contamination and 

elimination by washout in farm animals seems to depend on the cortisol concentration of the 

contaminant as well as on species-specific housing conditions and behavioural patterns, such as 

lying on soiled floors and social interactions. In pigs and cattle, urine contributed most to rising hair 

cortisol, followed by saliva, whereas the influence of faecal contamination on cortisol incorporation 

seemed only minor. Finally, a clear elimination of cortisol by water treatment was observed in pigs. 
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5.1.3  Implications 

 Our studies of cattle and pigs were the first to investigate various influencing factors on 

hair cortisol concentrations in farm animals to this comprehensive and comparative extent. The 

results showed variations in HCCs depending on the age of the animal, the body region of sampling, 

the hair segment and the hair colour. Age, body region and hair segment had great impacts, 

whereas the influence of hair colour was small. However, it is advisable to standardise as many 

influencing factors as feasible when comparing HCCs in different animal groups or within the same 

animal. Furthermore, evaluations of HPA axis activity or stress load, such as for welfare assessment, 

must consider that there are life periods in which systemic cortisol concentrations, and thus hair 

cortisol levels, are physiologically elevated, such as in newborn animals. 

 The present findings reveal a pronounced effect of external contamination and a potential 

influence of water treatment on hair cortisol levels. To avoid these effects, it is advisable to shave 

hair from obviously dry, clean body regions. Choosing the appropriate body region depends on the 

animal species, the specific husbandry environment and the accessibility for sampling. For cattle 

and pigs kept indoors, the sampling regions could be the neck, shoulder or back, which are out of 

reach of the tail and are not affected by soiling when the animals lie down. It is advantageous to 

use only the most proximal segments of the hair samples to avoid the confounding effect of 

contamination or washout. Similarly, the shave-reshave procedure and thus the analysis of only 

newly regrown hairs could be applied. 

 To further assess the impact of external contamination on the incorporation of cortisol into 

the hair shaft in farm animals, it would be useful to perform an in vivo experiment similar to the in 

vitro study. It is possible that due to the close connection of the hairs in the coat and the lack of cut 

ends, less of the surface contacts cortisol-containing contaminants and therefore less cortisol can 

penetrate the hair shaft. In addition, the hairs are constantly kept supple by sebum, which makes 

aqueous solutions less adherent and prevents damage to the hair structure (ROBBINS 2002). It 

would be interesting to find evidence for the assumption that the incorporation of external cortisol 

is higher in more severely damaged distal hair segments, such as by subsequent segmentation of 

hair samples collected during an in vivo contamination experiment.  



5 General discussion 

56 

5.2 Hair cortisol concentration as an indicator of long-term stress in cattle and pigs 

5.2.1  Model for the increased release of systemic cortisol 

 The adrenocorticotrophic hormone plays a key role in the formation and release of cortisol 

from the adrenal cortex, thereby influencing systemic cortisol levels in the blood (SPENCER and 

DEAK 2017). For this reason, administrations of ACTH are commonly used to simulate the stress-

related activity of the HPA axis (KERSEY and DEHNHARD 2014). Since it is assumed that the main 

pathway of cortisol incorporation into the hair shaft is diffusion from the bloodstream (STALDER 

and KIRSCHBAUM 2012), ACTH applications are useful for investigating the relationship between 

increased systemic cortisol concentrations and hair cortisol levels. As shown in previous studies, 

repeated administrations of ACTH increase the activation of the HPA axis and the subsequently 

elevated incorporation of cortisol into the hair shaft (GONZÁLEZ-DE-LA-VARA et al. 2011, DULUDE-

DE BROIN et al. 2019). Therefore, repeated ACTH applications are a suitable model for the validation 

of HCC as a retrospective indicator of long-term stress. In the present study, the animals received 

either 2 ml of ACTH solution (100 IU Synacthen Depot) or 2 ml of saline intramuscularly every 

second day over four weeks. This experimental protocol was selected based on dose-response 

curves and results described in previous studies using the same dose in cattle (DOBSON et al. 2000, 

BIRAN et al. 2015) and pigs (OTTEN et al. 2004, BACKUS et al. 2013). In order to validate the ACTH-

application model, we also collected saliva samples, as salivary cortisol levels correlate strongly with 

systemic blood cortisol concentrations (COOK et al. 1996, NEGRÃO et al. 2004, HELLHAMMER et al. 

2009). As a result, significantly increased cortisol levels were observed in saliva samples after ACTH 

treatment during the application period without alterations in the controls of either species. 

Therefore, it was concluded that the ACTH-application model used to simulate the cortisol response 

to chronic intermittent stressors was effective. However, species-specific differences were 

observed in the magnitude and duration of the salivary cortisol response to ACTH, with a less 

pronounced reaction in pigs than cattle. Pigs showed elevated cortisol levels up to 6 h after ACTH 

application and a blunted magnitude, whereas in cattle, salivary cortisol increased for up to 9 h with 

a higher maximum, so a different effect on the hair cortisol concentration should be expected. 
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5.2.2 Models for the time course of cortisol incorporation into the hair shaft 

 To the authors’ knowledge, the ACTH study was the first to investigate and compare the 

effects of long-term stress on cortisol levels in different hair sample types at various sampling times 

in cattle and pigs. As part of this ACTH study and based on average hair growth rates and hair follicle 

depth in cattle and pigs, hair growth models were developed to determine the sampling times at 

which the highest HCCs are expected (see Fig 5. and Fig. 6 of Study 3). 

 Our results revealed hair growth rates of approximately 3.5 mm per month in the back 

region in cattle and 7 mm per month in pigs. Additionally, the hair follicle is located about 2 mm 

below the skin surface in cattle (UDO 1978) and 3.5 mm in pigs (personal data). Based on these 

data, we hypothesised that the natural hair of ACTH-treated animals would exhibit increased 

cortisol levels as early as week 4, immediately after the end of treatment. In addition, maximum 

HCCs were expected four weeks after the end of the treatment period (week 8), when the natural 

hair samples contained the total amount of cortisol incorporated during the treatment period. We 

also predicted decreased cortisol concentrations eight weeks after the end of the treatment (week 

12) caused by a dilution effect due to newly growing hair with basal cortisol levels. Moreover, 

natural hair samples contain not only actively growing hairs but also hairs in the catagen and 

telogen growth stages that cannot incorporate cortisol from the bloodstream. Therefore, these 

hairs can also dilute HCCs in natural hair samples. 

 In addition, we collected natural hair from the back region in pigs and the tail tip in cattle 

eight weeks after the end of the treatment (week 12) to cut them into segments. The lengths of the 

hair segments were chosen to approximately reflect the hair growth during the entire 12-week 

experimental period in three segments. Considering the different hair growth rates in the back and 

the tail tip, the proximal natural hair was cut into 1.5-cm segments in cattle and 1-cm segments in 

pigs. Taking into account the follicle depth, the hair growth rate and the number of segments, we 

expected elevated HCC in the most distal hair segments of ACTH-treated animals. 

 Regrown hair samples were obtained by applying the shave-reshave procedure and 

therefore mostly contained actively growing hairs. To establish a hair growth model for this hair 

sample type, we also assumed the hair growth rates and follicle depth as described above. Thus, 

increased and similar cortisol levels were expected in samples from ACTH-treated animals directly 

at the end and four weeks after the end of the treatment period (weeks 4 and 8). By week 12, all 

hair portions with elevated HCC should have been shaved, and no differences between treatment 

groups were expected. 
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5.2.3 Impact of hair sample type and sampling time 

 In cattle, increased cortisol concentrations were observed in all hair sample types (natural, 

regrown and segments) after ACTH application over four weeks. The cortisol concentrations were 

highest in regrown hair, which confirmed our hypothesis. In the natural hair of ACTH-treated 

animals, increased cortisol levels were observed at all sampling times after the treatment period, 

with the highest cortisol levels four weeks after the end of the treatment (week 8), followed by a 

decrease of HCC in week 12. In regrown hair samples, cortisol levels were higher in ACTH-treated 

cattle in weeks 4 and 8 than in the control animals, but the treatment groups had no differences in 

week 12. In conclusion, these results in cattle fully confirmed our assumptions derived from the 

hair growth models described above. 

 The results for salivary cortisol in samples collected during the 4-week treatment period 

revealed correlations with cortisol levels in both natural and regrown hair. The highest correlation 

was found between salivary cortisol and cortisol concentrations in regrown hair samples collected 

in week 4, indicating a strong relation between systemic cortisol levels and the cortisol 

concentration in this type of hair sample. The regrown hair samples mainly contained hairs that had 

actively grown within the preceding four weeks and may therefore reflect the systemic cortisol 

concentration during the previous weeks better than natural hair. Consistent with our results, other 

studies in goats and cattle have shown the greatest increases in hair cortisol levels after ACTH 

applications in samples collected within four weeks after treatment but not in later samples 

(GONZÁLEZ-DE-LA-VARA 2011, ENDO et al. 2018). 

 The results of the investigations of different hair segments in cattle also confirmed our 

hypothesis from the hair growth model. Increased hair cortisol levels from proximal to distal hair 

segments were observed in ACTH-treated animals, not in control animals. Therefore, for the first 

time in farm animals, hair segmentation appears to be applicable for the assessment of prior stress 

by creating a retrospective calendar. In conclusion, in cattle, the ACTH application model resulted 

in the expected increase in cortisol levels in all hair sample types, so hair cortisol could be a suitable 

indicator of long-term stress in this species. 

 In pigs, ACTH applications also resulted in increased hair cortisol levels, but only in natural 

hair in week 4 (the end of treatment) compared with basal levels in week 0. There were no 

differences in weeks 8 and 12 compared with basal levels. In regrown hair samples, we observed 

higher HCCs at week 4 (the end of treatment) than week 8. Thus, in contrast to cattle, the 

hypothesis of increased HCCs due to elevated systemic cortisol levels could only be confirmed in 

pigs for the sampling time immediately after the end of the treatment. However, like the increase 

of HCC in ACTH-treated pigs, control pigs also showed elevated hair cortisol levels, and there were 

no differences between the treatment groups for all hair types at all sampling times. Possible 

explanations for the lack of differences between the treatment groups could be the less 
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pronounced cortisol response in pigs after ACTH applications, as mentioned above, and the specific 

annual hair growth pattern. Cortisol is incorporated by diffusion from blood vessels during the 

anagen growth phase (STALDER and KIRSCHBAUM 2012). Pigs show a pronounced seasonality of 

hair follicle activity and undergo one hair growth cycle per year, during which the anagen phase 

occurs mainly in fall and winter (MOWAFY and CASSENS 1976a, WATSON and MOORE 1990). 

Therefore, the natural porcine hair samples shaved during the spring and summer seasons in our 

study may contain many hairs in the catagen and telogen phases that could not incorporate 

systemic cortisol. Another and more likely explanation for the increase in both treatments is the 

potential contamination caused by incorporating external cortisol from urine, saliva or faeces, 

which is explained in detail in Chapter 5.1.2. Due to the conventional housing conditions and 

species-specific behavioural patterns, the external contamination of hair by soiling appears to be 

more pronounced in pigs than in cattle. Investigating hair segments in pigs revealed an increase in 

HCC from proximal to distal segments, like ACTH-treated cattle, but no differences were found 

between treatments, which was consistent with the results in natural and regrown hair. Thus, 

increased HCC in the distal segments of control animals could also be due to external 

contamination. In summary, the results in pigs do not confirm the hair growth models, and the 

effect of long-term stress could not be assessed by analysing natural, regrown or segmented hairs. 

 The present results regarding natural, regrown und segmented hair reveal different 

advantages and disadvantages for each hair sample type. Using natural hair samples requires no 

preparatory work, and the sampling can be done spontaneously since only one shave is necessary. 

However, it must be considered that natural hair samples contain hairs that are in all three growth 

phases, so large portions of the sampled hairs may not be in the active growth phase and thus 

cannot incorporate systemic cortisol. In addition to this dilution effect, natural hair samples are 

exposed to external influences for longer periods than regrown samples. The older a hair is, the 

more its structure can be damaged (DAWBER 1996) and the more easily HCC can be influenced by 

both contamination and the elimination of cortisol. When using the shave-reshave method, 

regrown hair samples mainly contain hairs that have actively grown during the previous weeks, so 

dilution caused by different hair growth phases and external influences on HCC, such as 

contamination and UV radiation, might be lower. Hence, regrown hair samples can reflect systemic 

cortisol concentrations better than natural hair samples. Collecting hair segments has the 

advantage that the sampling time is more flexible than with regrown hair when the hair growth 

rate and follicle depth are known. However, the sampling time and size of the segments must be 

adjusted to allow the intended retrospective conclusion. Nevertheless, HCCs in older hair segments 

can also be influenced by external contamination and elimination, so segmentation should be 

limited to the most proximal centimetres. 
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5.2.4 Implications 

 Based on the comparison of the results in different hair sample types, the use of the shave-

reshave procedure can be recommended. For this purpose, an area is pre-shaved (e.g. the back 

region) before the period of interest and shaved again at the end of that period to collect and 

analyse regrown hairs. This sample of mainly active growing hairs should be less contaminated and 

have a lower dilution effect and therefore have a higher retrospective validity than samples of 

natural and segmented hair. Additionally, at least in cattle and pigs, hair samples should be taken 

no later than four weeks after the end of a stress period to obtain reliable information of average 

systemic cortisol concentrations during that period. 

 The results of the ACTH study on the applicability of hair segments in farm animals show 

that it might be possible, at least in cattle, to establish a retrospective calendar for the assessment 

of previous stress periods. With the knowledge of species-specific hair follicle depth and hair 

growth rate, different segments can be assigned to different preceding time periods. The length of 

segments and the time of sampling will then also depend on the duration of the period of interest. 

However, since increased HCC from proximal to distal hair segments was also observed in non-

stressed animals, at least in pigs, it may be advisable to use only the most proximal segments. 

 The time delay between cortisol incorporation and the sampling time is also important to 

consider. Due to the species-specific hair growth rates and follicle depth in cattle and pigs, an 

average of 14 days elapses between the incorporation of cortisol at the hair papillae and the time 

when that part of the hair appears on the skin surface. Considering the hair growth models and 

based on the present results, the highest HCC may be found in hair samples collected two weeks 

after the period of interest. However, a more precise clarification of when elevated cortisol levels 

occur in the hair shaft and above the skin would require an experiment with radio-labelled cortisol, 

like that conducted by KECKEIS et al. (2012), and more frequent sampling than in our ACTH study. 

To avoid losing information, we recommend shaving the hair as close to the skin as possible, which 

is best achieved by shaving against the direction of growth. In addition, plucking the hair should be 

avoided, as the hair root contains cortisol-producing cells (ITO et al. 2005), and even if these 

concentrations are low, they could affect HCC results.  
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5.3 Future perspectives 

 The results of our studies provide a basis for further investigating the practical applicability 

of hair cortisol as an indicator of long-term stress. To evaluate the applicability of HCC under 

practical conditions in cattle and pigs, further research should investigate the impact of stress loads 

relevant to practice (e.g. high stocking density, high animal/feeding-place ratio and high milk yield). 

It is of great interest whether the magnitude of these stress loads can also induce a detectable 

increase in hair cortisol levels. However, this also requires further investigations to determine the 

physiologically normal range of HCCs in order to differentiate between normal physiological 

variations and pathological values. Unusually high HCCs would thus have a warning function to 

indicate particularly high stress levels or pathological conditions. Besides the retrospective 

assessment of the stress load of an individual animal, pooled samples of many animals could also 

provide information about housing conditions, possibly indicating stressful influences within a 

husbandry system or a farm. Additionally, slaughterhouses or dairies could use the information 

from the hair cortisol monitoring to assess the long-term stress level of a producer’s animals, which 

could be of interest to the processing industry and to consumers, as stress levels can affect meat 

and milk quality. The use of hair cortisol for the evaluation of stress loads could also become part 

of welfare assessment and monitoring programmes. It has the advantage that long-term 

retrospective and individual-based information can be collected in a minimally invasive way, which 

could improve the comprehensive assessment of housing conditions. A further application for hair 

cortisol analysis could be its use for stress monitoring in animal experiments. Here, it would be 

possible to assess the stress load caused by animal treatments more precisely. As the housing 

conditions in experimental settings are more standardised and more controlled than conventional 

husbandry conditions, it might also be easier to eliminate confounding factors.  
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5.4 Conclusions 

 In general, hair has great potential to serve as an innovative biological sample material. 

Since repeated activation of the HPA axis increases cortisol incorporated into the hair shaft, the 

prerequisite for using hair cortisol as an indicator of long-term stress in cattle and pigs is given. 

Nevertheless, age, body region, hair colour and hair segments are influencing factors that must be 

considered and standardised whenever possible. Attention must also be paid to the effect of 

possible external contamination. The present results show that the contamination of porcine and 

bovine hair with cortisol-containing body fluids, such as urine and saliva, may cause the 

incorporation of external cortisol into the hair shaft, which may affect the validity of hair cortisol as 

an indicator of HPA axis activity. Although a potential effect of contamination has been 

demonstrated in vitro in both species, the ACTH study has shown that this is more likely a 

confounding factor in vivo in pigs than in cattle. Therefore, in cattle, hair cortisol concentrations in 

natural, regrown and segmental hair samples reliably reflected the preceding period with increased 

systemic cortisol levels, entailing that all three hair sample types can be used to assess long-term 

stress. Since the highest hair cortisol levels were observed within four weeks after the end of stress, 

this period is the most appropriate time for hair sampling. Our investigations form a basis for further 

research on hair cortisol measurements in cattle and pigs. Analysing HCCs offers a minimally 

invasive, retrospective and animal-based method to measure long-term stress and may improve 

the comprehensive assessment of animal welfare. Thus, after further validation, hair cortisol 

analysis could be implemented in animal welfare–monitoring programmes  
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Introduction: Farm animals can be exposed to various stressors due to their husbandry conditions, 

which can impair their health and welfare. Thus, there is interest in the use of minimally invasive 

methods and animal-based stress indicators as part of welfare assessment. Cortisol in hair is a 

promising retrospective stress indicator, as a sample reflects systemic cortisol levels of the past 

weeks or months. Previous studies have shown that long-term stress with elevated cortisol release 

can be related to increased cortisol incorporation into the hair shaft. However, potential influencing 

factors that may affect hair cortisol concentrations (HCCs) must be determined before HCC can be 

applied as a reliable indicator of stress. 

Objectives: The general objectives of this thesis are to investigate influencing factors on HCC, and 

to examine the potential of hair cortisol concentration as an indicator of long-term stress in cattle 

and pigs. Thus, the present studies aimed to (1) identify knowledge gaps in hair cortisol research, 

(2) evaluate the impact of animal-based, seasonal and hair-specific factors as well as contamination 

and elimination on HCC, and (3) investigate whether and when long-term increased systemic 

cortisol levels are reflected in elevated HCCs. 

Animals, Material and Methods: Hairs were sampled from Holstein Friesian cattle, Landrace or 

Saddleback pigs and crossbreeds. The findings of the literature review (Study 1) identified potential 

animal-based, seasonal, hair-specific and stress-related factors on HCCs, which our experimental 

studies considered. To examine the impact of influencing factors (Study 2), a total of 614 animals 

were used. Hair samples were taken at different ages (newborn to adult), from different sexes and 

during both summer and winter. Variations by hair-specific factors were determined by studying 

black and white hair samples, varying body regions (neck/shoulder, back and tail tip) and different 

hair segments. In general, female animals were used. The effect of contamination on HCCs was 

examined in an in vitro study (Study 4) using hair samples from 12 cows and 12 sows. Samples were 

treated daily with urine, saliva, faeces or water for four weeks or remained untreated. To 

investigate long-term stress (Study 3), 34 cattle and 38 gilts were injected intramuscularly either 

with ACTH solution or saline every second day for four weeks. Natural and regrown hair samples 

were taken before and three times after the end of treatment, and hair segments were collected. 
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All the hair samples were shaved with electric clippers, washed twice with isopropanol and ground 

with a ball mill. Cortisol was detected by ELISA after extraction with methanol. Statistical analyses 

were performed using ANOVA and pairwise comparisons of the least square means by Tukey-

Kramer tests with the MIXED procedure in SAS/STAT software. 

Results: The results of Study 2 showed significantly higher HCCs in newborn calves than in young 

cattle, heifers and cows (p < 0.001). Likewise, 2-week-old piglets had higher HCCs than pigs aged 10 

or 27 weeks and sows (p < 0.001). Sex had no effect on HCCs in pigs or cattle. In both species, HCCs 

were also significantly higher in samples obtained from the tail tip than from the shoulder, neck 

and back regions (p < 0.001), in black hair than in white hair (p < 0.05) and in distal hair than in 

proximal hair segments (p < 0.001). Season had an impact on HCC only in cattle, which exhibited 

higher levels in winter than in summer (p < 0.001). The results of Study 4 showed that 

contamination with urine caused a considerable concentration-dependent increase in HCCs in both 

species. Contamination with saliva and faeces also raised HCCs, but only in cattle (all p < 0.05). 

Treatment with water washed cortisol out from porcine hair but not from bovine hair. In cattle, 

repeated ACTH application (Study 3) revealed significantly higher HCCs after the end of treatment 

in natural hair (up to eight weeks, p < 0.001), regrown hair (up to four weeks, p < 0.01) and 

segmental hair (eight weeks, p < 0.05) than in the control animals. The highest HCCs were found 

four weeks after the end of treatment. In pigs, elevated HCCs were observed in both ACTH and 

control animals in all hair sample types after the application period, with no differences between 

treatments. 

Conclusions: These results show that hair cortisol concentrations in pigs and cattle are affected by 

age, body region, hair colour, hair segment and season. There is first evidence that contamination 

of porcine and bovine hair with cortisol-containing body fluids, such as urine and saliva, may cause 

the incorporation of external cortisol into the hair shaft. Thus, when using HCC as a potential stress 

indicator, these influencing factors should be standardised and contamination effects should be 

avoided, such as by using the shave-reshave procedure, clean sampling regions and only the most 

proximal hair segments. The results also demonstrated that long-term stress by repeated activation 

of the HPA axis increases hair cortisol concentrations. In cattle, HCCs in different hair sample types 

reliably reflected the preceding period with increased systemic cortisol levels. In conclusion, the 

analysis of HCC appears to be a suitable method to evaluate long-term stress in cattle and pigs and 

can therefore be an important component in the assessment of animal welfare. 
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Einleitung: Nutztiere sind aufgrund ihrer Haltungsbedingungen diversen Stressoren ausgesetzt, 

welche ihre physische und psychische Gesundheit beeinträchtigen können. Im Rahmen von Animal 

Welfare Monitoring besteht daher ein großes Interesse an der Entwicklung und dem Einsatz 

minimal-invasiver Methoden und tierbezogener Belastungsindikatoren. Haarcortisol-

konzentrationen (HCCs) könnten hierfür ein vielversprechender, retrospektiver Stressindikator 

sein, da sie die durchschnittlichen systemischen Cortisolkonzentrationen der letzten Wochen bis 

Monate in nur einer Probe widerspiegeln. Bevor HCCs jedoch als zuverlässiger Indikator eingesetzt 

werden können, müssen potenzielle Einflussfaktoren darauf ermittelt werden. 

Ziele: Das generelle Ziel der vorliegenden Arbeit ist die Untersuchung von Einflussfaktoren auf 

Haarcortisol und seine Eignung für die Beurteilung von Langzeitstress bei Rindern und Schweinen. 

Daher zielten die vorliegenden Studien darauf ab, (1) Wissenslücken in der Forschung zu 

identifizieren, (2) die Wirkung potenzieller Einfluss- und Störfaktoren zu evaluieren und (3) zu 

untersuchen, ob und wann erhöhte systemische Cortisollevel durch HCCs nachweisbar sind. 

Tiere, Material und Methoden: Alle Haarproben wurde von Holstein-Rindern, Landrasse- und 

Sattelschweinen bzw. Kreuzungstieren entnommen. Aufgrund der Literaturrecherche (Studie 1) 

wurden potenzielle Einflussfaktoren identifiziert und in den nachfolgenden Studien untersucht. Für 

die Evaluierung nicht-stressbedingter Faktoren (Studie 2), wurden insgesamt 614 Tiere verwendet. 

Hierfür wurden Haarproben in verschiedenen Altersstufen (Neugeborene bis Erwachsene), von 

beiden Geschlechtern und während der Sommer- und Wintersaison entnommen. Außerdem 

wurden schwarze und weiße Haarproben, unterschiedliche Körperregionen (Nacken/Schulter, 

Rücken, Schwanzspitze) und verschiedene Haarsegmente untersucht. Der Einfluss von 

Kontaminationen auf HCCs wurde in einer in-vitro-Studie (Studie 4) mit Haarproben von 12 Kühen 

und 12 Sauen evaluiert. Diese Proben wurden für vier Wochen täglich mit Urin, Speichel, Kot oder 

Wasser behandelt oder blieben unbehandelt. Um die Wirkung von Langzeitstress auf HCCs zu 

untersuchen (Studie 3), wurde bei 34 Rindern und 38 Jungsauen über vier Wochen jeden zweiten 

Tag ACTH- oder Kochsalzlösung appliziert. Vor, sowie zu drei Zeitpunkten nach Ende der 

Behandlung, wurden native und neu gewachsene Haare sowie zusätzlich Haarsegmente 
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entnommen. Alle Haarproben wurden zweimal mit Isopropanol gewaschen, mit einer Kugelmühle 

gemahlen und Cortisol nach Extraktion mit Methanol mittels ELISA nachgewiesen. Die statistische 

Auswertung erfolgte mittels SAS/STAT-Software unter Anwendung von ANOVA und paarweisen 

Vergleichen durch Tukey-Kramer Tests. 

Ergebnisse: Die Ergebnisse der Studie 2 zeigen signifikant höhere HCCs bei neugeborenen Kälbern 

im Vergleich zu Jungrindern, Färsen und Kühen (p < 0,001). Ebenso wiesen 2 Wochen alte Ferkel 

höhere HCCs auf als Schweine im Alter von 10 oder 27 Wochen oder Sauen (p < 0,001). Das 

Geschlecht hatte keinen Einfluss auf die HCCs beider Tierarten. Jedoch waren bei beiden Spezies 

die HCCs in Schwanzhaaren, im Vergleich zu den Schulter-, Nacken- und Rückenhaaren signifikant 

erhöht (p < 0,001), ebenso in schwarzen Haaren im Vergleich zu weißen Haaren (p < 0,05) und in 

distalen im Vergleich zu proximalen Haarsegmenten (p < 0,001). Außerdem wiesen Rinder im 

Winter höhere HCCs als im Sommer auf (p < 0,001). Die Ergebnisse der Studie 4 zeigen, dass die 

Kontamination mit Urin bei beiden Spezies eine konzentrationsabhängige Zunahme der HCCs 

bewirkt. Auch die Kontamination mit Speichel und Kot erhöhte die HCCs, jedoch nur bei Rindern 

(alle p < 0,05). Die Behandlung mit Wasser führte zu einer Auswaschung von Cortisol aus Haaren 

vom Schwein, jedoch nicht vom Rind. Die Ergebnisse der ACTH-Studie (Studie 3) zeigen signifikant 

erhöhte HCCs bei ACTH-Tieren zum Ende der Behandlung in nativen Haaren (p < 0,001), 

nachgewachsenen Haaren (p < 0,01) und in Haarsegmenten (p < 0,05). Die höchsten HCCs wurden 

innerhalb von vier Wochen nach Behandlungsende gefunden. Bei Schweinen wurde ein Anstieg der 

HCCs sowohl in ACTH- als auch in Kontrolltieren beobachtet ohne dass Unterschiede zwischen den 

Behandlungen auftraten. 

Schlussfolgerungen: Die Ergebnisse zeigen, dass die Cortisolkonzentrationen im Haar bei 

Schweinen und Rindern durch Alter, Körperregion, Haarfarbe, Haarsegment und Jahreszeit 

beeinflusst werden. Es gibt erste Belege, dass die Kontamination von Schweine- und Rinderhaaren 

mit cortisolhaltigen Körperflüssigkeiten, wie Urin und Speichel, die Aufnahme von externem 

Cortisol in den Haarschaft verursacht. Bei der Verwendung von HCC als Stressindikator sollten daher 

diese Einflussfaktoren standardisiert und Kontaminationseffekte vermieden werden, z.B. durch die 

Verwendung von Aufwuchsproben oder nur proximaler Haarsegmente. Darüber hinaus konnte 

gezeigt werden, dass Langzeitstress durch wiederholte Aktivierung der HPA-Achse zu erhöhten 

Cortisolkonzentrationen im Haar führt. Bei Rindern zeigt sich dies in den HCCs verschiedener 

Haarprobentypen. Insgesamt erweist sich die Analyse von Cortisol im Haar als eine geeignete 

Methode zum Nachweis von Langzeitstress bei Rindern und Schweinen und könnte daher eine 

wichtige Komponente bei der Beurteilung von Animal Welfare sein.  
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